
Terpsichora: a tool to generate synthetic
MP-Declare process models

Wesley da Silva Santos1, Juliana Rezende Coutinho2, Fernanda Baião2,
Georges Miranda Spyrides1, and Hélio Côrtes Vieira Lopes1

1 Department of Informatics, PUC-Rio, Rio de Janeiro, Brazil
{wsantos,gspyrides,lopes}@inf.puc-rio.br

2 Department of Industrial Engineering, PUC-Rio, Rio de Janeiro, Brazil
{julianarezendecoutinho@aluno.,fbaiao@}puc-rio.br

Abstract. Process models play a fundamental role in the Business Pro-
cess Management lifecycle and are crucial for assessing the robustness of
proposed algorithms and conducting benchmarks among different tools.
However, public models are limited as they expose strategic knowledge.
While some researchers developed public repositories of imperative mod-
els, there remains a lack of diverse, publicly available multi-perspective
declarative models. Our work aims to bridge this gap by providing a tool
for generating synthetic MP-Declare process models. We leverage Large
Language Models to generate these models, ensuring coverage of diverse
aspects and enhancing the resource pool for the BPM community.

Key words: declarative process management, process models, mp-
declare, synthetically generated data, large language models

1 Introduction

Business Process Management (BPM) is a systematic approach to improve an or-
ganization’s business processes [1]. It involves modeling, automation, execution,
control, measurement, and optimization of business processes. A key component
of BPM is the use of process models, which serve as blueprints for how processes
should be executed. These models are essential for understanding, analyzing,
and enhancing the efficiency of a company’s operations.

Process models are generally categorized into imperative or declarative mod-
els [2]. Imperative models specify the exact sequence of tasks to be performed,
whereas declarative models define constraints that specify what should and
should not happen during the process execution. Declarative models, such as
those using the Declare language, are particularly suited for environments where
flexibility and adaptability are crucial. They allow for more dynamic and flexible
process execution by focusing on the rules and constraints governing the process
rather than the exact flow of activities.

Declare comprises constraints and templates to define the permissible behav-
ior within a process, allowing for greater adaptability and exception handling [3].
Multi-perspective process modeling incorporates various dimensions of process

2 Wesley da Silva Santos et al.

execution, including control-flow, data, and resources. This holistic approach
provides a more comprehensive understanding of business processes, which is
essential for accurate analysis and optimization [4]. MP-Declare is the multi-
perspective version of Declare [5] which allows the specification of relationships
between many entities that are involved in business processes, such as actors,
control-flow, rules, and attributes.

Despite their advantages, the availability of public multi-perspective declara-
tive process models is limited. This scarcity is primarily because process models
can reveal strategic knowledge about how organizations operate, making compa-
nies reluctant to share them publicly [6]. While some repositories of imperative
models have been developed ([7], [8] and [9]), there is still a significant gap in
the availability of diverse multi-perspective declarative models, as most of the
available models were extracted from mining techniques and are in repositories
of declarative process mining tools, such as RuM Toolkit and Declare4Py [10].

On the other hand, recent advancements in AI, particularly in generative AI
(GAI), have shown promise in generating complex data structures, including pro-
cess models [6]. These models can learn from vast amounts of data and generate
new instances that are both diverse and representative of real-world scenarios,
unlike traditional approaches [11]. The use of synthetic data and models is gain-
ing traction in BPM research, with an emphasis on many artifacts, such as log
generations ([12], [13] and [14]). Synthetic data generation enhanced with GAI
allows the creation of diverse and representative datasets without compromising
proprietary business information ([15] and [16]), thereby enabling robust testing,
development, and benchmarking.

Our work addresses this gap by providing Terpsichora1, a tool capable of
generating synthetic MP-Declare models. By leveraging GAI, specifically large
language models (LLM), we systematically generated a wide range of MP-
Declare models that cover diverse aspects of business processes and domains.
This approach not only enriches the resources available to the BPM community
but also demonstrates the potential of using advanced AI techniques in process
model generation [17]. Our work builds on these foundations by integrating large
language models to generate MP-Declare models, thus addressing the need for
diverse, public multi-perspective declarative process models.

2 Related Work

In the field of BPM, synthetic data generation has become increasingly important
for research and algorithm evaluation. This trend spans various aspects of BPM
life-cycle, from event logs and process models to improvements and redesign
suggestions. Loreti et al. [18] introduced an innovative method for generating
synthetic logs with both positive and negative business process traces using ab-
ductive reasoning, addressing limitations in existing log generation techniques. Li
et al. proposed a new paradigm for automating business process model discovery

1 Available at: https://github.com/santos-wesley/Terpsichora

Terpsichora 3

from natural language documents, creating the MaD dataset [19] to support this
approach. Their work highlights the potential of large-scale datasets in train-
ing NLP models for BPM applications. Similarly, Yan et al. developed a tech-
nique for generating synthetic collections of business process models that mimic
real-world properties, providing researchers with realistic datasets for evaluating
process management techniques [20].

Leveraging advanced machine learning techniques, Van Dun et al. intro-
duced ProcessGAN [21], a novel approach using generative adversarial networks
(GANs) to support business process improvement. Their work demonstrates the
potential of AI in enhancing creative aspects of BPM, such as generating im-
provement ideas. These studies collectively showcase the growing integration of
AI and machine learning techniques in BPM, from automating model discov-
ery and improvement suggestions to generating synthetic data for research and
evaluation purposes. They highlight the potential for more efficient, accurate,
and innovative approaches to process modeling, analysis, and improvement in
the field of Business Process Management.

Over the years, research in synthetic data generation for BPM has advanced
significantly, evolving from log generation to tackling specific challenges such as
process improvement and redesign. However, despite these advancements, many
approaches still rely on classical synthetic data generation techniques, which
carry inherent limitations rooted in the characteristics of the trained data and the
paradigms of the generation methods [22]. These limitations include difficulties
in accurately modeling and reproducing complex, multidimensional relationships
between variables, challenges in ensuring evaluation and consistency for complex
pipelines, and the risk of overfitting, where models trained on synthetic data
may become too tailored to the specifics of the generation process and thus fail
to generalize effectively to real-world data. Additionally, accurately representing
rare but important events or outliers in synthetic data is particularly challenging.
Furthermore, adapting these models to new domains often necessitates extensive
retraining, requiring handcrafted linguistic features and rules that are labor-
intensive to create and maintain.

3 Data Model, LLM Configuration and Prompt
Engineering Techniques

To interplay with large language models, we created a metamodel (Figure 1)
representing the structural definition of an MP-Declare model ([4] and [5]). This
metamodel specifies the constructs involved in MP-Declare in the form of classes
and their relationships and was converted to a data model using Pydantic 2, a
data validation library for Python which we used to validate if the data complies
with our metamodel. Following, we explain the implementation of each construct
in the metamodel, detailing the goal of each class, its rules, and attributes.

2 Available at: https://docs.pydantic.dev/latest/

4 Wesley da Silva Santos et al.

Fig. 1. The UML metamodel for the generation of MP-Declare process models.

The Activity class represents an activity within a process model. It is char-
acterized by its name (a string that follows the format “<Action Verb><Object>”,
suggested by [23] as a good pattern for naming an activity), and description

(which provides a detailed explanation of the activity’s purpose). The Attribute
class defines attributes of a process, characterized by its type (which indicates
whether the attribute is an integer, float, or enumeration), name (specifying the
attribute’s name) and description (providing a detailed explanation of the at-
tribute); optionally, min value and max value fields define the range for integer
or float attributes, while enumeration values is a list of possible values for
enumeration attributes.

The Bind class represents the linkage between activities and their attributes
in a model. Hence, each bind is defined by an Activity (which represents the
Activity involved in the binding), attributes (a list of Attribute objects
bound to the activity), and a description (providing a description of the
bind’s purpose). The Constraint class models the constraints governing pro-
cess execution, characterized by its type (specifying if the constraint is unary
or binary), description (a detailed explanation of the constraint), template
(which specifies the constraint’s template), activation (representing the ac-
tivation activity, required for both unary and binary constraints), its target

(representing the target activity, required for binary constraints); in particular,
the activation condition, correlation condition, and time condition are
optional fields for specifying specific conditions that govern the constraint’s exe-
cution. Finally, cardinality defines the cardinality for certain unary templates.
The MPDeclareModel is the main class and encapsulates the entire MP-Declare
process model.

In addition to the structural metamodel illustrated in Figure 1, our imple-
mentation of the proposed repository comprises validators to ensure appropriate
types for each type of construct of the model, using logical and pattern methods.
The convert to string method provides a string representation of the process
model, formatting activities, binds, attributes, and constraints into a coherent
textual format suitable for parsing to Declare4Py.

Terpsichora 5

Fig. 2. The generation sequence diagram.

We used gpt-4o-2024-05-13, the flagship model of OpenAI, and ChatGPT
3 to generate 500 random domains to feed the generation prompt with a diverse
set of domains to generate the models. Alongside with that, we modified the
temperature parameter, which is used in the sampling process when generating
text to control the randomness or entropy of the text [24]. A higher temperature
value increases the randomness, while a lower value makes the model’s output
more deterministic. We used lower values of temperature (0.2) to make our
outputs more reproducible and replicable [25].

We leveraged some prompt engineering (PE) techniques to understand the
MP-Declare nuances and generate process models, without the extensive compu-
tational and data resources requirements of fine-tuning ([24] and [26]).We used
role-prompting [27], which goal is to assign a specific role to the LLM. In our
case, we guided the LLM to generate data as an expert in process modeling and
analysis and domain expertise using natural language instruction. Knowledge
injection [28] involves providing the LLM with specific information that may
not have been explored during its training.

In our case, we injected knowledge from MP-Declare’s constraints templates
in the pipeline, explaining them in natural language through an assistant prompt
and converted the model from Pydantic to infuse the model with adequate ex-
pected generation, through the function call feature of OpenAI [29]. Function
calling enables the integration of LLMs with external tools and systems. This

3 Available at: https://chatgpt.com/

6 Wesley da Silva Santos et al.

capability has wide-ranging applications, including enhancing AI assistants with
expanded functionalities and facilitating seamless interactions between applica-
tions and these models.

A set of few-shot learning was prepared to instruct the LLM of expected input
and outputs. Few-shot learning in LLMs refers to the ability of these models to
perform new tasks with only a small number of examples or demonstrations [30].
In our case, we used few-shots to enhance model’s capability of generating data
with quality to our proposed metamodel implementation.

4 Synthetic Model Generation and Quality Assessment

A pipeline was developed in a Jupyter Notebook4, comprising all the steps for
generating MP-Declare models guided by our proposed metamodel, the required
packages, PE configurations, and post-processing techniques that were created.
Figure 2 depicts a sequence diagram of the generation process, showing the inter-
actions between the user, tool, and metamodel, pydantic and Output Handler.

We generated 500 process models in two batches5, varying quantity of ac-
tivities, constraint types, conditions, business domains, and complexity through
prompts6. The models were used to assess the tool and were exported and saved
to decl and JSON formats. The JSON file contains descriptions of the process
constructs. We used the guidelines of Sandve et al. [31] to make our experiment
reproducible, using version control system, log of generation of process models,
error handling in tool and open access scripts.

Fig. 3. A model discovered from log of synthetically generated process by Terpsichora.

With regard to quality assessment, the discussion about quality of declarative
process models is almost absent in the literature. de Oca et al. [32] systemati-
cally reviewed the literature on business process modeling quality, investigating
quality issues, relevant frameworks, and gaps. They showed there is no gener-
ally accepted framework for process model quality assessment and this is still a
broader issue in the BPM field, even in the imperative paradigm. Some aspects
of the Seven Process Modeling Guidelines (7PMG), proposed by Mendling et al.
[33], were used to evaluate the generated models. The 7PMG proposes guide-
lines to assess quality of process constructs, such as elements usage, routing
paths, model structuring, and so on. Although 7PMG are tailored to imperative

4 Available at: https://github.com/santos-wesley/Terpsichora/blob/main/

Terpsichora_The_Pipeline.ipynb
5 Available at: https://github.com/santos-wesley/Terpsichora/tree/main/

Models
6 Generation prompts can be found in the batch subfolders in each model directory.

Terpsichora 7

Table 1. Overall Statistics (Batch 1 vs Batch 2)

Metric Min Mean Median Max Std

Batch 1 Batch 2 Batch 1 Batch 2 Batch 1 Batch 2 Batch 1 Batch 2 Batch 1 Batch 2

Activities 8 10 9.904 14.888 10 15 10 19 0.356 0.807

Attributes 5 5 9.296 9.768 10 10 11 11 1.329 0.821

Binds 3 3 8.38 10.18 9 9.5 10 16 1.858 3.220

Attributes per Bind 1 1 1.863 1.711 2 2 5 4 0.659 0.661

Constraints 7 11 9.948 14.96 10 15 11 19 0.324 0.611

Unary Constraints 1 2 2.964 4.060 3 4 5 7 0.755 1.058

Binary Constraints 4 8 6.984 10.90 7 11 9 17 0.794 1.167

Integer Attributes 1 1 3.084 3.204 3 3 6 7 0.961 0.886

Float Attributes 0 0 1.512 1.616 1 2 3 4 0.633 0.718

Enumeration Attributes 2 2 4.7 4.948 5 5 8 8 1.220 1.036

Cardinality 1 1 1.817 4.042 1 1 50 1000 3.347 44.07

Activation Conditions 0 0 0.196 0.204 0 0 3 4 0.511 0.553

Correlation Conditions 0 0 0.016 0.016 0 0 1 1 0.125 0.125

Time Conditions 0 0 2.524 3.104 2 3 6 6 0.964 0.945

Templates per Model 3 3 7.492 9.516 8 9 10 15 1.473 2.248

Table 2. Template Usage Statistics (Batch 1 vs Batch 2)

Template Count Percentage of Total Constraints Models Using Template

Batch 1 Batch 2 Batch 1 Batch 2 Batch 1 Batch 2

Precedence 498 773 20.02412545 20.6684492 238 242

Response 378 591 15.19903498 15.80213904 219 234

Chain Response 314 426 12.6256534 11.39037433 194 216

Init 251 252 10.0924809 6.737967914 250 247

End 231 232 9.288299156 6.203208556 230 231

Chain Succession 212 305 8.524326498 8.155080214 162 188

Existence 148 254 5.950944914 6.79144385 141 196

Alternate Response 101 159 4.061117813 4.251336898 94 127

Absence 62 172 2.49296341 4.598930481 62 163

Exactly 49 105 1.970245275 2.807486631 47 97

Succession 45 88 1.809408926 2.352941176 41 78

Chain Precedence 37 63 1.487736228 1.684491979 37 57

Responded Existence 29 54 1.16606353 1.443850267 28 49

Not Co-Existence 28 53 1.125854443 1.417112299 28 53

Co-Existence 24 46 0.965018094 1.229946524 23 42

Alternate Succession 22 46 0.88459992 1.229946524 22 42

Alternate Precedence 17 20 0.683554483 0.534759358 16 19

Choice 10 20 0.402090873 0.534759358 10 20

Not Precedence 9 8 0.361881785 0.213903743 9 8

Not Succession 8 26 0.321672698 0.695187166 8 23

Not Responded Existence 6 1 0.241254524 0.026737968 6 1

Exclusive Choice 4 19 0.160836349 0.50802139 4 19

Not Chain Succession 2 13 0.080418175 0.347593583 2 13

Not Response 1 4 0.040209087 0.106951872 1 4

Not Chain Response 1 7 0.040209087 0.187165775 1 7

Not Chain Precedence 0 3 0 0.080213904 0 3

8 Wesley da Silva Santos et al.

Table 3. Complexity Metrics (Batch 1 vs Batch 2)

Metric Min Mean Median Max Std

Batch 1 Batch 2 Batch 1 Batch 2 Batch 1 Batch 2 Batch 1 Batch 2 Batch 1 Batch 2

Size 17 22 19.852 29.848 20 30 21 34 0.513 1.072

Density 0.5 0.667 0.822 0.888 0.833 0.875 1 1.333 0.081 0.081

Separability 0.05 0.029 0.160 0.156 0.150 0.167 0.353 0.308 0.048 0.047

Constraint Variability 0 0 0.768 0.789 0.802 0.826 1 1 0.211 0.172

languages and typically assume control-flow, we used two guidelines to assess
our models quality: G3: Use one start and one end event and G6: Use
verb-object activity labels.

We enforced the activities’ names to have more than one word and use the
verb-object pattern through PE and assessed a sample of the models. Every
activity name has between 2 and 5 words, complying with our instruction and
guideline G6. Most of the models comply with G3, but some generated models
(batch 1: 72 and 77; batch 2: 100, 165, 211, 82, 86 and 87) have not more than
two init or end constraints, and their usage relates to real-world possibilities.
Table 1 and Table 2 present statistics about the model generation process of
the two batches. For the two batches, we observed that the tool were capable
of following our instructions regarding the quantity of elements of the model
and the variety of constraints. The data of the two batches reveals that the tool
progressively enhanced its model generation capabilities, as evidenced by the
increase in complexity and diversity of the generated models. This progression
demonstrates the tool’s robustness in handling a wider range of process scenarios.
The adherence to guidelines instructed with PE, coupled with the generation of
models that closely resemble real-world processes.

Additionaly to these statistics, we used metrics of declarative models already
employed and validated in literature proposed by Abbad-Andaloussi et al.[34].
Table 3 show these metrics, which explore the models in therms of size, density,
separability and constraint variability. A comparative analysis of Batch 1 and
Batch 2 reveals significant differences in model complexity and structure. Batch
2 models are notably larger, with a mean size of 29.848 compared to 19.852 in
Batch 1, and exhibit greater size variability (std dev 1.072 vs 0.513). This sub-
stantial size increase suggests that Batch 2 represents more complex processes,
and thus reflect that the strategy we employed in PE worked.

Interestingly, despite this size difference, both batches maintain similar den-
sity characteristics (means of 0.822 and 0.888), indicating a consistent ratio of
constraints to activities. However, Batch 2’s higher maximum density (1.333)
points to some instances of highly constrained models, potentially reflecting
more intricate rule structures in certain cases. The separability metric shows
a slight decrease in Batch 2 (mean 0.156 vs 0.160), suggesting that the addi-
tional elements in these larger models are integrated into existing components
rather than forming discrete sub-processes. This integration trend implies more
interconnected and complex process representations in Batch 2. Both batches
demonstrate high constraint variability (means of 0.768 and 0.789), indicating

Terpsichora 9

the use of diverse constraint types across models. Notably, Batch 2 shows slightly
more consistency in this diversity (std dev 0.172 vs 0.211), suggesting a more
uniform application of varied constraints across its models.

Collectively, these metrics reflect increased complexity in Batch 2, character-
ized by larger, more integrated models with consistently diverse constraint usage.
The similarities in density and separability metrics between batches, despite the
significant size difference, suggest that the modeling approach scales effectively
to larger, more complex processes without fundamentally altering the model
structure. This scalability, combined with the trend towards integration rather
than fragmentation as processes grow more complex, indicates that the model-
ing technique is well-suited for representing increasingly sophisticated business
processes while maintaining structural integrity and coherence.

We used several models (batch 1: 135, 250; batch 2: 39, 240) to generate logs
and rediscover them7. We visually assessed them, and they were similar in terms
of discovered constraints and control flow. Figure 3 shows a discovered model
that appears very imperative. When compared with the synthetically generated
model (model 250 from batch 1), it has the same constructs.

We inspected the generated JSON of these models to assess the descriptions
and determine if they fit the knowledge we injected into the model. An ex-
ample of a constraint description generated by Terpsichora for model 250 is:
Chain Succession[Approve Transfer, Execute Transfer] | | |0,2h, de-
scribed as “Execute Transfer must directly follow Approve Transfer
within 2 hours.” This description is compliant with our instructions and aligns
with the semantics of the constraint.

5 Conclusions

In this work we presented Terpsichora, a tool for generating MP-Declare models
leveraging LLM capabilities of PE and tool calling. To evaluate the proposal, we
generated 500 models and assessed them using statistics of output, metrics estab-
lished in literature and visually assessed a sample of these models qualitatively
to attest that they are real-world related.

Our proposal enables a novel generation of a diverse set of MP-Declare mod-
els, representing a resource for assessing the robustness of new algorithms, bench-
marking tools, and generating logs for simulation purposes, among others. Our
pipeline is both reproducible and customizable, allowing users to generate mod-
els while overcoming the classic limitations of synthetic data generation, which
often requires data acquisition and model training.

Terpsichora’s utilization of Large Language Models (LLMs) offers significant
advantages in addressing key challenges in synthetic process model generation.
By leveraging the complex pattern recognition capabilities of LLMs, Terpsichora
can capture and reproduce intricate multidimensional relationships between pro-
cess elements, as evidenced by the diverse constraint types and their distributions

7 Available at: https://github.com/santos-wesley/Terpsichora/tree/main/Logs

10 Wesley da Silva Santos et al.

shown in Table 2. This approach not only generates models with sophisticated
control-flow patterns and multi-perspective aspects but also enhances adaptabil-
ity to new domains. Unlike traditional methods that require extensive retraining
and domain-specific adjustments, Terpsichora’s prompt-based generation allows
for quick adaptation to different business contexts simply by modifying the input
prompts. This flexibility is particularly valuable for researchers and practitioners
working across various industries.

Furthermore, the use of LLMs significantly reduces the need for handcrafted
linguistic features and rules, which are often labor-intensive to create and main-
tain in traditional synthetic data generation methods. By automating the in-
terpretation and application of process semantics with a metamodel and coding
it into a datamodel in Pydantic, Terpsichora offers a more efficient and scal-
able approach to generating diverse, realistic MP-Declare models, potentially
accelerating research and development in the context of model generation.

Along with the traditional constructs of MP-Declare, we add a new at-
tribute to generate descriptions for each construct. This resource enables se-
mantic anomaly detection not only for activities, as proposed by [35], but also
for constraints. Another potential application is in generating multi-perspective
process logs, incorporating additional perspectives inexistent in traditional log
generation from structured models.

However, there are limitations. First, the current output context window of
the model is limited to 4096 tokens, which restricts the ability to generate larger
models and to test the LLM capacity to produce and maintain coherence in
extensive, real-world models. Second, to ensure reproducibility, we kept a low
temperature. Higher temperatures generally lead to more creative outputs, which
could be beneficial for evaluating different generations of the same process.

Future work include testing with other models, including the newest OpenAi
gpt-4o-2024-08-06, which implemented structured outputs techniques to en-
hance model inference in a given structured schema with complex rules [36] and
increased the output tokens to 16384. Also, the usage of other prompt techniques
to evaluate model quality at a semantic level, such as LLM-as-a-Judge [37], which
enables open-ended questions evaluation using LLMs. Finally, addressing the un-
derstandability and cognitive impact of models generated by Terpsichora.

References

1. M. Dumas, L. M. Rosa, J. Mendling, and H. A. Reijers, Fundamentals of Business
Process Management, Springer, 2018.

2. W. M. P. van der Aalst, M. Pesic, and H. Schonenberg, “Declarative workflows:
Balancing between flexibility and support,” Computer Science-Research and Devel-
opment, vol. 23, pp. 99–113, 2009.

3. C. Di Ciccio and M. Montali, “Declarative Process Specifications: Reasoning, Dis-
covery, Monitoring,” in Process Mining Handbook, W. M. P. van der Aalst and J.
Carmona, Eds., Springer International Publishing, Cham, 2022, pp. 108–152, doi:
10.1007/978-3-031-08848-3 4.

Terpsichora 11

4. S. Schönig, C. Di Ciccio, F. M. Maggi, and J. Mendling, “Discovery of Multi-
perspective Declarative Process Models,” in Service-Oriented Computing, Springer
International Publishing, Cham, 2016, pp. 87–103.

5. A. Burattin, F. M. Maggi, and A. Sperduti, “Conformance checking based on multi-
perspective declarative process models,” Expert Systems with Applications, vol. 65,
pp. 194–211, 2016.

6. S. Feuerriegel, J. Hartmann, C. Janiesch, and P. Zschech, “Generative AI,” Business
& Information Systems Engineering, vol. 66, no. 1, pp. 111–126, 2024.

7. F. Corradini, F. Fornari, A. Polini, B. Re, F. Tiezzi, and others, “RePROSitory: a
Repository Platform for Sharing Business PROcess modelS,” BPM (PhD/Demos),
vol. 2420, pp. 149–153, 2019.

8. M. Weske, G. Decker, M. Dumas, L. Rosa, J. Mendling, and H. A. Reijers, “Model
collection of the business process management academic initiative,” Zenodo, doi:
10.5281/zenodo.3758705, 2020.

9. D. Sola, C. Warmuth, B. Schäfer, P. Badakhshan, J. R. Rehse, and T. Kampik,
“SAP Signavio Academic Models: a large process model dataset,” in International
Conference on Process Mining, Springer, 2022, pp. 453–465.

10. A. Alman, I. Donadello, F. M. Maggi, and M. Montali, “Declarative Process Min-
ing for Software Processes: The RuM Toolkit and the Declare4Py Python Library,”
in International Conference on Product-Focused Software Process Improvement,
Springer, 2023, pp. 13–19.

11. R. Sutton, A. Barto, Reinforcement Learning: An Introduction, MIT Press, 2018.
12. V. Skydanienko, C. Di Francescomarino, C. Ghidini, and F. M. Maggi, “A Tool

for Generating Event Logs from Multi-Perspective Declare Models,” BPM (Disser-
tation/Demos/Industry), vol. 2196, pp. 111–115, 2018.

13. I. Donadello, F. M. Maggi, F. Riva, and M. Singh, “ASP-Based Log Generation
with Purposes in Declare4Py,” in ICPM Doctoral Consortium/Demo, 2023.

14. C. Di Ciccio, M. L. Bernardi, M. Cimitile, and F. M. Maggi, “Generating event logs
through the simulation of declare models,” in Enterprise and Organizational Mod-
eling and Simulation: 11th International Workshop, EOMAS 2015, Held at CAiSE
2015, Stockholm, 2015, Selected Papers 11, Springer, 2015, pp. 20–36.

15. J. Recker, M. Indulska, M. Rosemann, and P. Green, “How Good is BPMN Re-
ally? Insights from Theory and Practice,” in J. Ljungberg and M. Andersson, Eds.,
Proceedings 14th European Conference on Information Systems, Goeteborg, 2006.

16. A. Burattin, “Artificial datasets for multi-perspective Declare analysis,” Zenodo,
Jul. 2015, doi: 10.5281/zenodo.20030.

17. H. van der Aa, C. Di Ciccio, H. Leopold, and H. A. Reijers, “Extracting declar-
ative process models from natural language,” in Advanced Information Systems
Engineering: 31st International Conference, CAiSE 2019, Rome, Italy, June 3–7,
2019, Proceedings 31, Springer, 2019, pp. 365–382.

18. D. Loreti, F. Chesani, A. Ciampolini, and P. Mello, “Generating synthetic positive
and negative business process traces through abduction,” Knowledge and Informa-
tion Systems, vol. 62, pp. 813–839, 2020.

19. X. Li, L. Ni, R. Li, J. Liu, and M. Zhang, “MaD: A Dataset for Interview-based
BPM in Business Process Management,” in 2023 International Joint Conference on
Neural Networks (IJCNN), IEEE, 2023, pp. 1–8.

20. Z. Yan, R. Dijkman, and P. Grefen, “Generating synthetic process model collec-
tions with properties of labeled real-life models,” in Asia Pacific Business Process
Management: Second Asia Pacific Conference, AP-BPM 2014, Brisbane, QLD, Aus-
tralia, July 3-4, 2014. Proceedings 2, Springer, 2014, pp. 74–88.

12 Wesley da Silva Santos et al.

21. C. van Dun, L. Moder, W. Kratsch, and M. Röglinger, “ProcessGAN: Supporting
the creation of business process improvement ideas through generative machine
learning,” Decision Support Systems, vol. 165, p. 113880, 2023.

22. S. I. Nikolenko, Synthetic Data for Deep Learning, vol. 174, Springer, 2021.
23. H. Leopold, R. H. Eid-Sabbagh, J. Mendling, L. G. Azevedo, and F. A. Baiao, “De-

tection of naming convention violations in process models for different languages,”
Decision Support Systems, vol. 56, pp. 310–325, 2013.

24. C. Li, F. Luo, C. Tan, M. Wang, S. Huang, S. Li, and J. Bai, “Parameter-efficient
sparsity for large language models fine-tuning,” in Proceedings of the Thirty-First
International Joint Conference on Artificial Intelligence, IJCAI 2022, Vienna, Aus-
tria, 23-29 July 2022, L. De Raedt, Ed., ijcai.org, 2022, pp. 4223–4229.

25. P. Ivie and D. Thain, “Reproducibility in scientific computing,” ACM Computing
Surveys (CSUR), vol. 51, no. 3, pp. 1–36, 2018.

26. I. Thangarasa, A. Gupta, W. Marshall, T. Li, K. Leong, D. DeCoste, S. Lie, and
S. Saxena, “SPDF: sparse pre-training and dense fine-tuning for large language
models,” in Uncertainty in Artificial Intelligence, UAI 2023, July 31 - 4 August
2023, Pittsburgh, PA, USA, R. J. Evans and I. Shpitser, Eds., vol. 216, Proceedings
of Machine Learning Research, PMLR, 2023, pp. 2134–2146.

27. B. Xu, A. Yang, J. Lin, Q. Wang, C. Zhou, Y. Zhang, and Z. Mao, “Expert-
prompting: Instructing large language models to be distinguished experts,” CoRR,
abs/2305.14688, 2023.

28. A. Martino, M. Iannelli, and C. Truong, “Knowledge injection to counter large
language model (LLM) hallucination,” in European Semantic Web Conference,
Springer, 2023, pp. 182–185.

29. OpenAI, “Function Calling Guide,” 2024. [Online]. Available: https://platform.
openai.com/docs/guides/function-calling. Accessed: 2024-07-03.

30. T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Nee-
lakantan, P. Shyam, G. Sastry, et al., “Language models are few-shot learners,”
Advances in Neural Information Processing Systems, 33, pp. 1877–1901, 2020.

31. G. K. Sandve, A. Nekrutenko, J. Taylor, and E. Hovig, “Ten simple rules for
reproducible computational research,” PLoS Computational Biology, vol. 9, no. 10,
p. e1003285, 2013.

32. I. Moreno-Montes de Oca, M. Snoeck, H. A. Reijers, and A. Rodŕıguez-Morffi,
“A systematic literature review of studies on business process modeling quality,”
Information and Software Technology, vol. 58, pp. 187–205, 2015.

33. J. Mendling, H. Reijers, and W. van der Aalst, “Seven process modeling guidelines
(7PMG),” Information and Software Technology, 52(2), pp. 127–136, 2010.

34. A. Abbad-Andaloussi, A. Burattin, T. Slaats, E. Kindler, and B. Weber, “Complex-
ity in declarative process models: Metrics and multi-modal assessment of cognitive
load,” Expert Systems with Applications, vol. 233, p. 120924, 2023.

35. H. van der Aa, A. Rebmann, and H. Leopold, “Natural language-based detection
of semantic execution anomalies in event logs,” Information Systems, vol. 102, p.
101824, 2021, doi: 10.1016/j.is.2021.101824.

36. OpenAI, “Introducing structured outputs in the API,” 2024. [Online]. Available:
https://openai.com/index/introducing-structured-outputs-in-the-api/.
Accessed: 2024-08-11.

37. L. Zheng, W. Chiang, Y. Sheng, S. Zhuang, Z. Wu, Y. Zhuang, Z. Lin, Z. Li, D.
Li, E. Xing, et al., “Judging LLM-as-a-judge with MT-Bench and Chatbot Arena,”
Advances in Neural Information Processing Systems, vol. 36, 2024.

