
Local Large Language Models for Business
Process Modeling

Kaan Apaydin1 and Yorck Zisgen2

1 Department of Computer Science, Kiel University, Kiel, Germany
kap@informatik.uni-kiel.de,

2 University of Bayreuth, Bayreuth, Germany
firstname.lastname@uni-bayreuth.de

Abstract. Large language models (LLMs) are capable of efficiently un-
derstanding natural language by processing large volumes of text data.
Natural language is also used in process descriptions, thus LLMs appear
to be a suitable candidate to significantly improve business process mod-
eling. Although plenty of third-party LLMs exist, they raise the risk of
privacy disclosure, untrustworthiness, and generalizability of the results.
This paper proposes a pipeline to use a local and fine-tuned LLM that
expects a textual process description as input and finally generates a vi-
sual process tree representation. We instantiate our pipeline with Llama3
8B and fine-tune the LLM with a training set of 120 self-generated exam-
ples. Initial evaluation results of our LLM-based approach for automated
business process modeling promise usefulness of the approach in terms
of process model quality while preserving data privacy.

Keywords: Generative AI · Large Language Models · Process Modeling
· Fine-Tuning · Pipeline · Process Descriptions · Dataset.

1 Introduction

Large Language Models (LLMs) have gained significant attention for their ability
to process text data, making them a suitable candidate for business process
management tasks, particularly for business process modeling [4]. Existing LLM-
based approaches for business process modeling rely on cloud-based services
to generate process models from textual descriptions [1,3,7]. However, sharing
sensitive data with third parties hampers data privacy and security.

This paper proposes an LLM-based processing pipeline for automatic busi-
ness process modeling. Compared to existing works, the pipeline relies on fine-
tuning and local deployment of LLMs. By fine-tuning an LLM, it can demon-
strate competitive performance against commercial vendors like ChatGPT with
GPT-4 on specific tasks [2,9], while offering an improved control over data secu-
rity when employed locally.

We use prompt engineering techniques and input from process experts to
generate a representative data set consisting of process trees [8] and textual
process descriptions. The data set is then used to fine-tune a local LLM.



2 Apaydin et al.

We demonstrate the feasibility of the pipeline by implementing a tool for gen-
erating training data with scripts for fine-tuning LLMs3 relying on our dataset4,
and providing the first fine-tuned LLM for modeling process trees when prompted
with process descriptions5.

The remainder of the paper is structured as follows. Section 2 presents a
comparative analysis of related works. The LLM-based pipeline is presented in
Section 3. The paper concludes with section 4.

2 Related Work

Existing LLM-based approaches primarily use the latest versions of ChatGPT
[1,3,4] and, to a lesser extent, Gemini for modeling processes based on textual de-
scriptions [7]. Common across the approaches is the integration of definitions for
process modeling languages, ensuring that the LLM response uses the expected
process model notation. Additionally, few-shot learning techniques have been
found to be advantageous in improving process model quality. Kourani et al. [7]
further report improved results through role injection and negative prompting.
However, to the best of our knowledge, there remains a gap in the literature
regarding techniques that utilize locally executed LLMs and fine-tuning. Even
though other authors considered fine-tuning, it is often reported as unfeasible
due to the extensive datasets that are required but not available.

3 Pipeline for Process Modeling using local LLMs

Fig. 1. Pipeline for generating training data and fine-tuning an LLM.

Fig. 1 shows our pipeline, which consists of two phases: (1) Training Data
Generation and (2) LLM Fine-Tuning. In the first phase, labeled process trees
and their corresponding textual descriptions are generated to serve as a training
data set for fine-tuning in phase 2. The first phase consists of four steps and is
performed iteratively while additional data is required.
3 https://github.com/ApaydinK/local-LLMs-for-process-modelling
4 https://huggingface.co/datasets/ApaydinK/process_trees_w_descriptions
5 https://huggingface.co/ApaydinK/lora_model_process_tree_generator

https://github.com/ApaydinK/local-LLMs-for-process-modelling
https://huggingface.co/datasets/ApaydinK/process_trees_w_descriptions
https://huggingface.co/ApaydinK/lora_model_process_tree_generator


Local LLMs for BPM 3

1.1. Generate Process Tree: In this step the user generates a random
process tree using e.g. the implementation of the framework described by [6] in
PM4PY. We generated random process trees in increasing complexity. Starting
with three activities and going up to nine activities while iteratively restarting
the first phase. The weights for choosing operators randomly was set to sequence
0.5, choice 0.2, parallel 0.2, and loop 0.1. In this step, the activities have dummy
labels. 1.2 Propose & Insert Activity Labels: In this step, the LLM pro-
poses concrete process activity labels to replace the dummy labels based on the
process tree’s control flow. Subsequently, in step 1.3 Validate Process Tree
the user validates and revises the meaningfulness of the process tree and thus
can shift or rename activities and operators. Next, in step 1.4 Generate Pro-
cess Description the user manually generates a textual process description
corresponding to the process tree of step 1.3. In our case, three process experts
leveraged our tool3 to view the process tree while generating a corresponding
process description.

In the second phase, the process trees and corresponding process descrip-
tions are used to fine-tune a local LLM in four steps. 2.1 Choose & Down-
load LLM: First, a publicly available LLM is chosen and downloaded. We chose
Llama 3 8B Instruct6 and downloaded the LLM without quantization as it has
high rankings across benchmarks on the HuggingFace LLM Leaderboard7. 2.2
Add Process Tree Tokens: The string representation of the process tree’s
operators are then added to the tokenizer of the LLM. 2.3 Apply LLM Tem-
plate: Then, the LLM-specific template for prompts and responses is applied
to ensure that the LLM is trained accordingly. This is done to ensure that the
training data will be delivered to the LLM in the format that it requires, e.g. pro-
viding a system message labeling the textual description as input and defining the
process tree as the desired output. 2.4 Configure & Perform Fine-Tuning:
Finally, the LLM is fine-tuned. This step can involve testing different parame-
ter configurations. We used LoRA [5] with rank 16 for efficient fine-tuning and
bfloat 16 to improve accuracy over 10 epochs.

The performance of the fine-tuned model was evaluated iteratively after per-
forming both phases of the pipeline three times. For evaluation, we used one
process description from the PET Dataset8 and modeled a ground truth process
tree for comparison with sequence, choice, parallel, and loop operators. We ob-
served that after fine-tuning with 40 examples, the LLM modeled sound process
trees in 11 of 15 cases. After fine-tuning with 80 examples, all modeled process
trees were sound. After fine-tuning with 120 examples, the proposal of process
activity labels improved further - on average, 6,66 out of the 8 expected activities
were modeled successfully. However, despite these advances, challenges remained
in finding the correct process model. Especially the identification of parallel ac-
tivities was difficult. The average F1 score of discovered process models increased
from 0.36 after the first to 0.53 after the third iteration.

6 https://llama.meta.com/
7 https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard
8 https://pdi.fbk.eu/pet-dataset/

https://llama.meta.com/
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard
https://pdi.fbk.eu/pet-dataset/


4 Apaydin et al.

4 Conclusion

In this paper, we proposed a pipeline for fine-tuning locally deployed LLMs
for modeling process trees based on textual descriptions. We demonstrated the
feasibility of the pipeline by generating training data and fine-tuning a local
LLM. After three fine-tuning iterations, the local LLM exhibited appropriate
performance in proposing activity labels. It consistently generated sound process
trees, while the accuracy of control flows still has potential for improvement.

Future research should focus on expanding the size and diversity of the train-
ing dataset. Increasing the dataset size could enhance the model’s learning ca-
pacity. Additionally, breaking the problem into smaller, manageable steps could
lead to more robust results. For instance, initially extracting activity labels fol-
lowed by determining the control flow for each activity might yield improved
outcomes. Finally, exploring various LLMs and fine-tuning configurations could
offer further insights into optimizing performance.

Acknowledgments. This project has received funding from the State of Schleswig-
Holstein under the Datencampus project grant no. 220 21 016, the Federal Ministry
for Digital and Transport under the CAPTN-Förde 5G project grant no. 45FGU139 H
and the German Federal Ministry of Education and Research (BMBF) for the ABBA
project grant no. 16DHBKI002, 16DHBKI003, 16DHBKI004, 16DHBKI005.

References

1. Bellan, P., Dragoni, M., Ghidini, C.: Extracting Business Process Entities and Re-
lations from Text Using Pre-trained Language Models and In-Context Learning. In:
Enterprise Design, Operations, and Computing, vol. 13585, pp. 182–199. Springer
International Publishing, Cham (2022), lecture Notes in Computer Science

2. Bucher, M.J.J., Martini, M.: Fine-Tuned ’Small’ LLMs (Still) Significantly Outper-
form Zero-Shot Generative AI Models in Text Classification (Aug 2024)

3. Fill, H.G., Fettke, P., Köpke, J.: Conceptual Modeling and Large Language Models:
Impressions From First Experiments With ChatGPT. Enterprise Modelling and
Information Systems Architectures (EMISAJ) 18, 3:1–15 (Apr 2023)

4. Grohs, M., Abb, L., Elsayed, N., Rehse, J.R.: Large Language Models can accom-
plish Business Process Management Tasks. In: International Conference on Business
Process Management. pp. 453–465. Springer Nature Switzerland (Jul 2023)

5. Hu, E.J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., Wang, L., Chen, W.:
LoRA: Low-Rank Adaptation of Large Language Models (Oct 2021)

6. Jouck, T., Depaire, B.: PTandLogGenerator: A Generator for Artificial Event Data
(2016)

7. Kourani, H., Berti, A., Schuster, D., van der Aalst, W.M.P.: Process Modeling With
Large Language Models. In: International Conference on Business Process Modeling,
Development and Support. pp. 229–244. Springer Nature Switzerland (May 2024)

8. van Zelst, S.J., Leemans, S.J.J.: Translating Workflow Nets to Process Trees: An
Algorithmic Approach. Algorithms 13(11), 279 (Nov 2020)

9. Zhao, J., Wang, T., Abid, W., Angus, G., Garg, A., Kinnison, J., Sherstinsky, A.,
Molino, P., Addair, T., Rishi, D.: LoRA Land: 310 Fine-tuned LLMs that Rival
GPT-4, A Technical Report (Apr 2024)


	Local Large Language Models for Business Process Modeling

